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Gaussian process (GP) regression

Consider i.i.d. observations from the model

Yi = F (Xi ) + εi , i = 1, . . . , n, (1)

where

▶ X1, . . . ,Xn ∼ G i.i.d. on Rd and ε ∼ N(0, σ2In);

▶ F ∼ GP(0, k) with p.s.d. kernel k : Rd×d → R is a GP-prior on L2(G), i.e.

EF (x) = 0, Cov(F (x),F (x ′)) = k(x , x ′), x , x ′ ∈ Rd . (2)

Setting K := (k(Xi ,Xj ))
n
i,j=1 ∈ Rn×n and k(X , x) := (k(Xi , x))

n
i=1 ∈ Rn, the posterior

Π(·|X ,Y ) is given by the GP with mean and covariance function

x 7→ k(X , x)⊤(K + σ2In)
−1Y (3)

(x , x ′) 7→ k(x , x ′)− k(X , x)⊤(K + σ2In)
−1k(X , x ′).

Motivating problem.

The computation of (K + σ2I )−1 has a computational complexity of O(n3), which

becomes infeasable for large n.
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Algorithms from probabilistic numerics (Wenger et al. [Wen+22]1)

Idea: Focussing on the posterior mean k(X , x)⊤(K + σ2In)−1Y , iteratively solve

(K + σ2In)W = Y for the representer weights W .

▶ Consider a Bayesian updating scheme updating scheme with initial believes

W = (K + σ2In)−1Y ∼ N(0, (K + σ2In)−1) =: N(w0, Γ0).

▶ Consecutively update by conditioning on the information projection

αj := s⊤j (Y − (K + σ2In)wj−1), j ≤ m (4)

where sj , j ≤ m are search directions chosen by the user.

▶ After m steps, believes are given by N(wm, Γm) = N(CmY , (K + σ2)−1 − Cm).

This yields the approximate Gaussian posterior Ψm := PF |W=wN(wm, Γm)(dw)

with mean and covariance functions

x 7→ k(X , x)⊤CmY (x , x ′) 7→ k(x , x ′)− k(X , x)⊤Cmk(X , x ′), (5)

where Cm is a rank m matrix approximating (K + σ2In)−1.

1J. Wenger et al. “Posterior and computational uncertainty in Gaussian processes.”. In: Advances in Neural

Information Processing Systems (2022).
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The Empirical eigenvector posterior

Consider the spectral decomposition of the empirical kernel matrix

K =
n∑

j=1

µ̂j ûj û
⊤
j (6)

and choose the search directions sj := ûj , j ≤ m .

Then, the approximate posterior

Ψm = ΨEV
m is given by the mean and covariance function

x 7→ k(X , x)⊤CmY (x , x ′) 7→ k(x , x ′)− k(X , x)⊤Cmk(X , x ′), (7)

where (K + σ2In)−1 is approximated by

Cm = CEV
m =

m∑
j=1

(µ̂j + σ2)−1ûj û
⊤
j . (8)

The ΨEV
m is equivalent to the Variational Bayes posterior based on spectral inducing

variables [NSZ22]2

2D. Nieman, B.Szabo and H. van Zanten. “Contraction rates for sparse variational approximations in Gaussian

process regression”. In: Journal of Machine Learning Research 23 (2022).
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The Lanczos posterior

Consider the spectral decomposition of the empirical kernel matrix

K =
n∑

j=1

µ̂j ûj û
⊤
j (9)

and choose the search directions sj := ũj , j ≤ m , where (µ̃j , ũj )j≤m is the Lanczos

approximate eigensystem up to order m.

Then, the approximate posterior Ψm = ΨL
m is

given by the mean and covariance function

x 7→ k(X , x)⊤CmY (x , x ′) 7→ k(x , x ′)− k(X , x)⊤Cmk(X , x ′), (10)

with

Cm = CL
m =

m∑
j=1

(µ̃j + σ2)−1ũj ũ
⊤
j . (11)

Randomness of the kernel matrix

Since K = (k(Xi ,Xj )i,j≤n) is a random matrix, the spectral decomposition of K

cannot be computed in advance.
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⊤
j (9)

and choose the search directions sj := ũj , j ≤ m , where (µ̃j , ũj )j≤m is the Lanczos
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⊤
j . (11)

Randomness of the kernel matrix

Since K = (k(Xi ,Xj )i,j≤n) is a random matrix, the spectral decomposition of K

cannot be computed in advance.

6



The CG posterior

Conjugate gradient descent. Iteratively solve (K + σ2In)w = Y by setting w0 = 0

and for j ≥ 1,

ϱ(wj ) = min
t∈R

ϱ(wj−1 + tdCG
j ), (12)

where ϱ(w) := (w⊤(K + σ2In)w)/2− Y⊤w , and the (dCG
j )j≥1 are conjugate search

directions satisfying (dCG)⊤j (K + σ2In)dCG
k = 0, j ̸= k.

For the policies sj := dCG
j , j ≤ m , Bayesian updating is equivalent to the CG-iteration

and we obtain the approximate posterior ΨCG
m given by

x 7→ k(X , x)⊤CmY (x , x ′) 7→ k(x , x ′)− k(X , x)⊤Cmk(X , x ′), (13)

where Cm = CCG
m is given by the implicit approximation of the inverse provided by CG.
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GPU accelerated matrix vector multiplication

CG only relies on matrix vector multiplications, which can be GPU accelerated and

makes CG particularly relevant for large scale applications, see Wang et al.

[Wan+19].
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Reduction in computational complexity
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m,C

CG
m have a computation cost of O(mn2), which is

feasible when m ≪ n.
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A stylized approximate contraction result

Theorem (Approximate posterior contraction)

For f0 ∈ H with H = ranT
1/2
k ,

Tk : L2(G) → L2(G), f 7→
∫

f (y)k(·, y)G(dy) =
∞∑
j=1

λj ⟨f , ϕj ⟩L2(G)ϕj , (14)

let Pf0 be the measure corresponding to the data generating process

Yi = f0(Xi ) + εi , i = 1, . . . n (15)

Then, the true posterior Πn satisfies that for any sequence Mn → ∞,

Πn({f ∈ L2(G) : d(f , f0) ≥ Mnεn}|X ,Y ) → 0 (16)

in probability under P⊗n
f0

and n → ∞, where εn is the optimal achievable rate implied

by a concentration function inequality.
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Example: Polynomially decaying eigenvalues

For an ONB (ϕj )j≥1 of L2(G) and Zj ∼ N(0, 1) i.i.d., consider the random series prior

F (x) =
∞∑
j=1

τ j−1/2−α/dZjϕj (x), x ∈ Rd (17)

where α > 0 and τ are the regularity and scale hyperparameters of the process. Then,

for any

f0 ∈ Sβ(L) := {f ∈ L2(G) : ∥f ∥2
Sβ ≤ L} with ∥f ∥2

Sβ :=
∞∑
j=1

j2β/d ⟨f , ϕj ⟩2, (18)

with d/2 < β ≤ α+ d/2 and an apropriate choice of τ , the approximate posterior

satisfies that for any Mn → ∞,

Ψmn{f : dH(f , f0) ≥ Mnn
−β/(d+2β)|X ,Y } → 0, (19)

in probability under P⊗n
f0

and n → ∞ with mn ∼ nd/(2β+d) log n .
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Simulation example

Figure 1: Simulation results for n = 3000, m = 20, 40.
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Simulation example

Figure 2: Simulation results for n = 3000, m = 80 and scaling of computation times.
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Some conclusions

▶ Our theory is the first providing statistical guarantees for fully numerical

algorithms.

▶ Particular relevance in the CG posterior. Default method in the GPyTorch library,

see Gardner et al. [Gar+18].
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Proof techniques

▶ For KL(Ψmn ,Πn(·|X ,Y )) ≤ nε2n, the approximate posterior Ψmn inherits the

contraction rate εn, see Ray and Szabó [RS19].

▶ For the empricial eigenvector posterior with sj = ûj , j ≤ m this bound is available

via elementary tools.

▶ Analyze the Lanczos posterior as an approximation.
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Lanczos bounds from Numerical analysis

Theorem (Lanczos: Eigenvalue bound, [Saa80])

Under Assumption (LWdf), for any fixed integer i ≤ m̃ < n with λ̃i−1 > λ̂i if i > 1

and any integer p̃ ≤ m̃ − i , the eigenvalue approximation satisfies

0 ≤ λ̂i − λ̃i ≤ (λ̂i − λ̂n)
( κ̃iκi,p̃ tan(ûi , v0)

Tm̃−i−p̃(γi )

)2
, (20)

where γi := 1 + 2(λ̂i − λ̂i+p̃+1)/(λ̂i+p̃+1 − λ̂n),

κ̃i :=

i−1∏
j=1

λ̃j − λ̂n

λ̃j − λ̂i

, κi,p̃ :=

i+p̃∏
j=i+1

λ̂j − λ̂n

λ̂i − λ̂j

, (21)

and Tl denotes the l-th Tschebychev polynomial.
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Challenges from spectral concentration

Theorem (Eigenvalue concentration, Shawe-Taylor and Williams [STW02])

The empirical eigenvalues (λ̂j )j≤n of the normalized kernel matrix K/n satisfy

(i) For any t > 0 and any fixed m ≥ 1, both

P{|λ̂m − Eλ̂m| ≥ t} ≤ 2 exp
( −2nt2

maxx k(x , x)4

)
(22)

and

P{|
n∑

j=m+1

λ̂j − E
n∑

j=m+1

λ̂j | ≥ t} ≤ 2 exp
( −2nt2

maxx k(x , x)4

)
. (23)

(ii) For any fixed m ≥ 1,

E
m∑
j=1

λ̂j ≥
m∑
j=1

λj and E
n∑

j=m+1

λ̂j ≤
∞∑

j=m+1

λj . (24)
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Challenges from spectral concentration

Proposition (Relative perturbaton bounds, Jirak and Wahl [JW23])

Under appropriate assumptions, fix m ∈ N and further assume that

rj (Tk ) :=
∑
k ̸=j

λk

|λj − λk |
+

λj

(λj−1 − λj ) ∧ (λj − λj+1)
≤ C

√
n

log n
, (22)

for all j ≤ m. Then, the eigenvalues of K/n satisfy the relative perturbation bound

∣∣∣ λ̂j − λj

λj

∣∣∣ ≤ C

√
log n

n
for all j ≤ m (23)

with high probability.
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Martin Wahl

Ongoing joint work on perturbation series for

empirical eigenvalues and eigenprojectors.
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Proof techniques

▶ For KL(Ψmn ,Πn(·|X ,Y )) ≤ nε2n, the approximate posterior Ψmn inherits the

contraction rate εn, see Ray and Szabó [RS19].

▶ For the empricial eigenvector posterior with sj = ûj , j ≤ m this bound is available

via elementary tools.

▶ Analyze the Lanczos posterior as an approximation.

▶ Establish the equivalence of the CG and the Lanczos posterior.
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Some conclusions

▶ Our theory is the first providing statistical guarantees for fully numerical

algorithms.

▶ Particular relevance lies in the CG posterior. Default method in the GPyTorch

library, see Gardner et al. [Gar+18].

▶ New interpretation of the CG posterior as a numerical approximation of a

variational Bayes method.
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Resources

Preprint Author page

Thank you!
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