Bocconi

Contraction rates for conjugate gradient and Lanczos approximate posteriors in Gaussian process regression

Bernhard Stankewitz Bernoulli-ims 11th World Congress in Probability and Statistics Bochum, August 2024

Department of Decision Sciences Bocconi University

Joint work with

Botond Szabo, Bocconi Milano

Gaussian process (GP) regression

Consider i.i.d. observations from the model

$$Y_i = F(X_i) + \varepsilon_i, \qquad i = 1, \dots, n, \tag{1}$$

where

• $X_1, \ldots, X_n \sim G$ i.i.d. on \mathbb{R}^d and $\varepsilon \sim N(0, \sigma^2 I_n)$;

▶ $F \sim GP(0, k)$ with p.s.d. kernel $k : \mathbb{R}^{d \times d} \to \mathbb{R}$ is a GP-prior on $L^2(G)$, i.e.

$$\mathbb{E}F(x) = 0, \qquad \operatorname{Cov}(F(x), F(x')) = k(x, x'), \qquad x, x' \in \mathbb{R}^d.$$
(2)

Gaussian process (GP) regression

Consider i.i.d. observations from the model

$$Y_i = F(X_i) + \varepsilon_i, \qquad i = 1, \dots, n, \tag{1}$$

where

- $X_1, \ldots, X_n \sim G$ i.i.d. on \mathbb{R}^d and $\varepsilon \sim N(0, \sigma^2 I_n)$;
- ▶ $F \sim GP(0, k)$ with p.s.d. kernel $k : \mathbb{R}^{d \times d} \to \mathbb{R}$ is a GP-prior on $L^2(G)$, i.e.

$$\mathbb{E}F(x) = 0, \qquad \operatorname{Cov}(F(x), F(x')) = k(x, x'), \qquad x, x' \in \mathbb{R}^d.$$
(2)

Setting $K := (k(X_i, X_j))_{i,j=1}^n \in \mathbb{R}^{n \times n}$ and $k(X, x) := (k(X_i, x))_{i=1}^n \in \mathbb{R}^n$, the posterior $\Pi(\cdot|X, Y)$ is given by the GP with mean and covariance function

$$x \mapsto k(X, x)^{\top} (K + \sigma^2 I_n)^{-1} Y$$

$$(x, x') \mapsto k(x, x') - k(X, x)^{\top} (K + \sigma^2 I_n)^{-1} k(X, x').$$

$$(3)$$

Gaussian process (GP) regression

Consider i.i.d. observations from the model

$$Y_i = F(X_i) + \varepsilon_i, \qquad i = 1, \dots, n, \tag{1}$$

where

- $X_1, \ldots, X_n \sim G$ i.i.d. on \mathbb{R}^d and $\varepsilon \sim N(0, \sigma^2 I_n)$;
- ▶ $F \sim GP(0, k)$ with p.s.d. kernel $k : \mathbb{R}^{d \times d} \to \mathbb{R}$ is a GP-prior on $L^2(G)$, i.e.

$$\mathbb{E}F(x) = 0, \qquad \operatorname{Cov}(F(x), F(x')) = k(x, x'), \qquad x, x' \in \mathbb{R}^d.$$
(2)

Setting $K := (k(X_i, X_j))_{i,j=1}^n \in \mathbb{R}^{n \times n}$ and $k(X, x) := (k(X_i, x))_{i=1}^n \in \mathbb{R}^n$, the posterior $\Pi(\cdot|X, Y)$ is given by the GP with mean and covariance function

$$x \mapsto k(X, x)^{\top} (K + \sigma^{2} I_{n})^{-1} Y$$

$$(x, x') \mapsto k(x, x') - k(X, x)^{\top} (K + \sigma^{2} I_{n})^{-1} k(X, x').$$

$$(3)$$

Motivating problem.

The computation of $(K + \sigma^2 I)^{-1}$ has a computational complexity of $O(n^3)$, which becomes infeasable for large *n*.

Idea: Focussing on the posterior mean $k(X, x)^{\top}(K + \sigma^2 I_n)^{-1}Y$, iteratively solve $(K + \sigma^2 I_n)W = Y$ for the representer weights W.

• Consider a Bayesian updating scheme updating scheme with initial believes $W = (K + \sigma^2 I_n)^{-1} Y \sim N(0, (K + \sigma^2 I_n)^{-1}) =: N(w_0, \Gamma_0).$

¹J. Wenger et al. "Posterior and computational uncertainty in Gaussian processes.". In: Advances in Neural Information Processing Systems (2022).

Idea: Focussing on the posterior mean $k(X, x)^{\top}(K + \sigma^2 I_n)^{-1}Y$, iteratively solve $(K + \sigma^2 I_n)W = Y$ for the representer weights W.

• Consider a Bayesian updating scheme updating scheme with initial believes $W = (K + \sigma^2 I_n)^{-1} Y \sim N(0, (K + \sigma^2 I_n)^{-1}) =: N(w_0, \Gamma_0).$

Consecutively update by conditioning on the information projection

$$\alpha_j := \mathbf{s}_j^\top (\mathbf{Y} - (\mathbf{K} + \sigma^2 \mathbf{I}_n) \mathbf{w}_{j-1}), \qquad j \le m \tag{4}$$

where $s_i, j \leq m$ are search directions chosen by the user.

¹J. Wenger et al. "Posterior and computational uncertainty in Gaussian processes.". In: Advances in Neural Information Processing Systems (2022).

Idea: Focussing on the posterior mean $k(X, x)^{\top}(K + \sigma^2 I_n)^{-1}Y$, iteratively solve $(K + \sigma^2 I_n)W = Y$ for the representer weights W.

Consider a Bayesian updating scheme updating scheme with initial believes W = (K + σ²I_n)⁻¹Y ~ N(0, (K + σ²I_n)⁻¹) =: N(w₀, Γ₀).

Consecutively update by conditioning on the information projection

$$\alpha_j := \mathbf{s}_j^\top (\mathbf{Y} - (\mathbf{K} + \sigma^2 \mathbf{I}_n) \mathbf{w}_{j-1}), \qquad j \le m \tag{4}$$

where $s_i, j \leq m$ are search directions chosen by the user.

• After *m* steps, believes are given by $N(w_m, \Gamma_m) = N(C_m Y, (K + \sigma^2)^{-1} - C_m)$. This yields the approximate Gaussian posterior $\Psi_m := \mathbb{P}^{F|W=w}N(w_m, \Gamma_m)(dw)$ with mean and covariance functions

$$x \mapsto k(X, x)^{\top} C_m Y \qquad (x, x') \mapsto k(x, x') - k(X, x)^{\top} C_m k(X, x'), \qquad (5)$$

where C_m is a rank *m* matrix approximating $(K + \sigma^2 I_n)^{-1}$.

¹J. Wenger et al. "Posterior and computational uncertainty in Gaussian processes.". In: Advances in Neural Information Processing Systems (2022).

The Empirical eigenvector posterior

Consider the spectral decomposition of the empirical kernel matrix

$$K = \sum_{j=1}^{n} \widehat{\mu}_j \widehat{u}_j \widehat{u}_j^{\top}$$
(6)

and choose the search directions $s_j := \widehat{u}_j, \, j \leq m$.

 $^{^2}$ D. Nieman, B.Szabo and H. van Zanten. "Contraction rates for sparse variational approximations in Gaussian process regression". In: Journal of Machine Learning Research 23 (2022).

$$K = \sum_{j=1}^{n} \widehat{\mu}_j \widehat{u}_j \widehat{u}_j^{\top}$$
(6)

and choose the search directions $s_j := \widehat{u}_j$, $j \leq m$. Then, the approximate posterior $\Psi_m = \Psi_m^{\rm EV}$ is given by the mean and covariance function

$$x \mapsto k(X,x)^{\top} C_m Y \qquad (x,x') \mapsto k(x,x') - k(X,x)^{\top} C_m k(X,x'), \tag{7}$$

where $(K + \sigma^2 I_n)^{-1}$ is approximated by

$$C_m = C_m^{\mathsf{EV}} = \sum_{j=1}^m (\widehat{\mu}_j + \sigma^2)^{-1} \widehat{u}_j \widehat{u}_j^\top.$$
(8)

 $^{^2}$ D. Nieman, B.Szabo and H. van Zanten. "Contraction rates for sparse variational approximations in Gaussian process regression". In: Journal of Machine Learning Research 23 (2022).

$$K = \sum_{j=1}^{n} \widehat{\mu}_j \widehat{u}_j \widehat{u}_j^{\top}$$
(6)

and choose the search directions $s_j := \widehat{u}_j$, $j \leq m$. Then, the approximate posterior $\Psi_m = \Psi_m^{\rm EV}$ is given by the mean and covariance function

$$x \mapsto k(X,x)^{\top} C_m Y \qquad (x,x') \mapsto k(x,x') - k(X,x)^{\top} C_m k(X,x'), \tag{7}$$

where $(K + \sigma^2 I_n)^{-1}$ is approximated by

$$C_m = C_m^{\text{EV}} = \sum_{j=1}^m (\widehat{\mu}_j + \sigma^2)^{-1} \widehat{u}_j \widehat{u}_j^{\top}.$$
(8)

The Ψ_m^{EV} is equivalent to the Variational Bayes posterior based on spectral inducing variables $[\text{NSZ22}]^2$

²D. Nieman, B.Szabo and H. van Zanten. "Contraction rates for sparse variational approximations in Gaussian process regression". In: *Journal of Machine Learning Research* 23 (2022).

$$K = \sum_{j=1}^{n} \widehat{\mu}_j \widehat{u}_j \widehat{u}_j^{\top}$$
(9)

and choose the search directions $s_j := \tilde{u}_j, j \leq m$, where $(\tilde{\mu}_j, \tilde{u}_j)_{j \leq m}$ is the Lanczos approximate eigensystem up to order m.

$$\mathcal{K} = \sum_{j=1}^{n} \widehat{\mu}_{j} \widehat{u}_{j} \widehat{u}_{j}^{\top}$$
(9)

and choose the search directions $s_j := \tilde{u}_j, j \leq m$, where $(\tilde{\mu}_j, \tilde{u}_j)_{j \leq m}$ is the Lanczos approximate eigensystem up to order m. Then, the approximate posterior $\Psi_m = \Psi_m^L$ is given by the mean and covariance function

$$x \mapsto k(X,x)^{\top} C_m Y \qquad (x,x') \mapsto k(x,x') - k(X,x)^{\top} C_m k(X,x'), \tag{10}$$

with

$$C_m = C_m^{\rm L} = \sum_{j=1}^m (\tilde{\mu}_j + \sigma^2)^{-1} \tilde{u}_j \tilde{u}_j^{\rm T}.$$
 (11)

$$\mathcal{K} = \sum_{j=1}^{n} \widehat{\mu}_{j} \widehat{u}_{j} \widehat{u}_{j}^{\top}$$
(9)

and choose the search directions $s_j := \tilde{u}_j, j \leq m$, where $(\tilde{\mu}_j, \tilde{u}_j)_{j \leq m}$ is the Lanczos approximate eigensystem up to order m. Then, the approximate posterior $\Psi_m = \Psi_m^L$ is given by the mean and covariance function

$$x \mapsto k(X,x)^{\top} C_m Y \qquad (x,x') \mapsto k(x,x') - k(X,x)^{\top} C_m k(X,x'), \qquad (10)$$

with

$$C_m = C_m^{\mathsf{L}} = \sum_{j=1}^m (\tilde{\mu}_j + \sigma^2)^{-1} \tilde{u}_j \tilde{u}_j^{\top}.$$
 (11)

Randomness of the kernel matrix

Since $K = (k(X_i, X_j)_{i,j \le n})$ is a random matrix, the spectral decomposition of K cannot be computed in advance.

$$\varrho(w_j) = \min_{t \in \mathbb{R}} \varrho(w_{j-1} + td_j^{\mathsf{CG}}), \tag{12}$$

where $\varrho(w) := (w^{\top}(K + \sigma^2 I_n)w)/2 - Y^{\top}w$, and the $(d_j^{CG})_{j\geq 1}$ are conjugate search directions satisfying $(d^{CG})_i^{\top}(K + \sigma^2 I_n)d_k^{CG} = 0, j \neq k$.

$$\varrho(w_j) = \min_{t \in \mathbb{R}} \varrho(w_{j-1} + td_j^{\mathsf{CG}}), \tag{12}$$

where $\varrho(w) := (w^{\top}(K + \sigma^2 I_n)w)/2 - Y^{\top}w$, and the $(d_j^{CG})_{j\geq 1}$ are conjugate search directions satisfying $(d^{CG})_j^{\top}(K + \sigma^2 I_n)d_k^{CG} = 0, j \neq k$.

For the policies $s_j := d_j^{CG}$, $j \le m$, Bayesian updating is equivalent to the CG-iteration and we obtain the approximate posterior Ψ_m^{CG} given by

$$x \mapsto k(X, x)^{\top} C_m Y \qquad (x, x') \mapsto k(x, x') - k(X, x)^{\top} C_m k(X, x'), \tag{13}$$

where $C_m = C_m^{CG}$ is given by the implicit approximation of the inverse provided by CG.

$$\varrho(w_j) = \min_{t \in \mathbb{R}} \varrho(w_{j-1} + td_j^{\mathsf{CG}}), \tag{12}$$

where $\varrho(w) := (w^{\top}(K + \sigma^2 I_n)w)/2 - Y^{\top}w$, and the $(d_j^{\text{CG}})_{j\geq 1}$ are conjugate search directions satisfying $(d^{\text{CG}})_j^{\top}(K + \sigma^2 I_n)d_k^{\text{CG}} = 0, j \neq k$.

For the policies $s_j := d_j^{CG}$, $j \le m$, Bayesian updating is equivalent to the CG-iteration and we obtain the approximate posterior Ψ_m^{CG} given by

$$x \mapsto k(X,x)^{\top} C_m Y \qquad (x,x') \mapsto k(x,x') - k(X,x)^{\top} C_m k(X,x'), \tag{13}$$

where $C_m = C_m^{CG}$ is given by the implicit approximation of the inverse provided by CG.

GPU accelerated matrix vector multiplication

CG only relies on matrix vector multiplications, which can be GPU accelerated and makes CG particularly relevant for large scale applications, see Wang et al. [Wan+19].

$$\varrho(w_j) = \min_{t \in \mathbb{R}} \varrho(w_{j-1} + td_j^{\mathsf{CG}}), \tag{12}$$

where $\varrho(w) := (w^{\top}(K + \sigma^2 I_n)w)/2 - Y^{\top}w$, and the $(d_j^{CG})_{j\geq 1}$ are conjugate search directions satisfying $(d^{CG})_i^{\top}(K + \sigma^2 I_n)d_k^{CG} = 0, j \neq k$.

For the policies $s_j := d_j^{CG}$, $j \le m$, Bayesian updating is equivalent to the CG-iteration and we obtain the approximate posterior Ψ_m^{CG} given by

$$x \mapsto k(X, x)^{\top} C_m Y \qquad (x, x') \mapsto k(x, x') - k(X, x)^{\top} C_m k(X, x'), \tag{13}$$

where $C_m = C_m^{CG}$ is given by the implicit approximation of the inverse provided by CG.

Reduction in computational complexity

The approximate inversions C_m^L , C_m^{CG} have a computation cost of $O(mn^2)$, which is feasible when $m \ll n$.

Theorem (Approximate posterior contraction)

For $f_0 \in \overline{\mathbb{H}}$ with $\mathbb{H} = \operatorname{ran} T_k^{1/2}$,

$$T_k: L^2(G) \to L^2(G), \qquad f \mapsto \int f(y)k(\cdot, y) G(dy) = \sum_{j=1}^{\infty} \lambda_j \langle f, \phi_j \rangle_{L^2(G)} \phi_j, \qquad (14)$$

let \mathbb{P}_{f_0} be the measure corresponding to the data generating process

$$Y_i = f_0(X_i) + \varepsilon_i, \qquad i = 1, \dots n \tag{15}$$

Then, the true posterior Π_n satisfies that for any sequence $M_n \to \infty$,

$$\Pi_n(\{f \in L^2(G) : d(f, f_0) \ge M_n \varepsilon_n\} | X, Y) \to 0$$
(16)

in probability under $\mathbb{P}_{f_0}^{\otimes n}$ and $n \to \infty$, where ε_n is the optimal achievable rate implied by a concentration function inequality.

Theorem (Approximate posterior contraction)

For $f_0 \in \overline{\mathbb{H}}$ with $\mathbb{H} = \operatorname{ran} T_k^{1/2}$,

$$T_k: L^2(G) \to L^2(G), \qquad f \mapsto \int f(y)k(\cdot, y) G(dy) = \sum_{j=1}^{\infty} \lambda_j \langle f, \phi_j \rangle_{L^2(G)} \phi_j, \qquad (14)$$

let \mathbb{P}_{f_0} be the measure corresponding to the data generating process

$$Y_i = f_0(X_i) + \varepsilon_i, \qquad i = 1, \dots n \tag{15}$$

Then, the approximate posterior Ψ_m satisfies that for any sequence $M_n \to \infty$,

$$\Psi_{m_n}(\{f \in L^2(G) : d(f, f_0) \ge M_n \varepsilon_n\} | X, Y) \to 0$$
(16)

in probability under $\mathbb{P}_{f_0}^{\otimes n}$ and $n \to \infty$, where ε_n is the optimal achievable rate implied by a concentration function inequality and $m_n \to \infty$ is an appropriate sequence. For an ONB $(\phi_j)_{j\geq 1}$ of $L^2(G)$ and $Z_j \sim N(0,1)$ i.i.d., consider the random series prior

$$F(x) = \sum_{j=1}^{\infty} \tau j^{-1/2 - \alpha/d} Z_j \phi_j(x), \qquad x \in \mathbb{R}^d$$
(17)

where $\alpha >$ 0 and τ are the regularity and scale hyperparameters of the process. Then, for any

$$f_0 \in S^{\beta}(L) := \{ f \in L^2(G) : \|f\|_{S^{\beta}}^2 \le L \} \quad \text{with} \quad \|f\|_{S^{\beta}}^2 := \sum_{j=1}^{\infty} j^{2\beta/d} \langle f, \phi_j \rangle^2, \quad (18)$$

with $d/2 < \beta \le \alpha + d/2$ and an apropriate choice of τ , the approximate posterior satisfies that for any $M_n \to \infty$,

$$\Psi_{m_n}\{f: d_{\mathsf{H}}(f, f_0) \ge M_n n^{-\beta/(d+2\beta)} | X, Y\} \to 0,$$
(19)

in probability under $\mathbb{P}_{f_0}^{\otimes n}$ and $n \to \infty$ with $m_n \sim n^{d/(2\beta+d)} \log n$.

Figure 1: Simulation results for n = 3000, m = 20, 40.

Figure 2: Simulation results for n = 3000, m = 80 and scaling of computation times.

- Our theory is the first providing statistical guarantees for fully numerical algorithms.
- Particular relevance in the CG posterior. Default method in the GPyTorch library, see Gardner et al. [Gar+18].

- ► For KL(Ψ_{m_n} , $\Pi_n(\cdot|X, Y)$) $\leq n\varepsilon_n^2$, the approximate posterior Ψ_{m_n} inherits the contraction rate ε_n , see Ray and Szabó [RS19].
- For the empricial eigenvector posterior with $s_j = \hat{u}_j$, $j \le m$ this bound is available via elementary tools.
- Analyze the Lanczos posterior as an approximation.

Theorem (Lanczos: Eigenvalue bound, [Saa80])

Under Assumption (LWdf), for any fixed integer $i \leq \tilde{m} < n$ with $\tilde{\lambda}_{i-1} > \hat{\lambda}_i$ if i > 1and any integer $\tilde{p} \leq \tilde{m} - i$, the eigenvalue approximation satisfies

$$0 \leq \widehat{\lambda}_{i} - \widetilde{\lambda}_{i} \leq (\widehat{\lambda}_{i} - \widehat{\lambda}_{n}) \Big(\frac{\widetilde{\kappa}_{i} \kappa_{i, \tilde{p}} \tan(\widehat{u}_{i}, v_{0})}{T_{\tilde{m} - i - \tilde{p}}(\gamma_{i})} \Big)^{2},$$
(20)

where $\gamma_i := 1 + 2(\widehat{\lambda}_i - \widehat{\lambda}_{i+\widetilde{p}+1})/(\widehat{\lambda}_{i+\widetilde{p}+1} - \widehat{\lambda}_n)$,

$$\tilde{\kappa}_i := \prod_{j=1}^{i-1} \frac{\tilde{\lambda}_j - \hat{\lambda}_n}{\tilde{\lambda}_j - \hat{\lambda}_i}, \qquad \kappa_{i,\tilde{\rho}} := \prod_{j=i+1}^{i+\tilde{\rho}} \frac{\hat{\lambda}_j - \hat{\lambda}_n}{\hat{\lambda}_i - \hat{\lambda}_j},$$
(21)

and T_I denotes the I-th Tschebychev polynomial.

Challenges from spectral concentration

Theorem (Eigenvalue concentration, Shawe-Taylor and Williams [STW02]) The empirical eigenvalues $(\hat{\lambda}_j)_{j \le n}$ of the normalized kernel matrix K/n satisfy (i) For any t > 0 and any fixed m > 1, both

$$\mathbb{P}\{|\widehat{\lambda}_m - \mathbb{E}\widehat{\lambda}_m| \ge t\} \le 2\exp\left(\frac{-2nt^2}{\max_x k(x,x)^4}\right)$$
(22)

and

$$\mathbb{P}\{|\sum_{j=m+1}^{n}\widehat{\lambda}_{j} - \mathbb{E}\sum_{j=m+1}^{n}\widehat{\lambda}_{j}| \ge t\} \le 2\exp\Big(\frac{-2nt^{2}}{\max_{x}k(x,x)^{4}}\Big).$$
(23)

(ii) For any fixed $m \ge 1$,

$$\mathbb{E}\sum_{j=1}^{m}\widehat{\lambda}_{j} \ge \sum_{j=1}^{m}\lambda_{j} \quad \text{and} \quad \mathbb{E}\sum_{j=m+1}^{n}\widehat{\lambda}_{j} \le \sum_{j=m+1}^{\infty}\lambda_{j}. \quad (24)$$

Proposition (Relative perturbaton bounds, Jirak and Wahl [JW23])

Under appropriate assumptions, fix $m \in \mathbb{N}$ and further assume that

$$\mathbf{r}_{j}(T_{k}) := \sum_{k \neq j} \frac{\lambda_{k}}{|\lambda_{j} - \lambda_{k}|} + \frac{\lambda_{j}}{(\lambda_{j-1} - \lambda_{j}) \wedge (\lambda_{j} - \lambda_{j+1})} \leq C \sqrt{\frac{n}{\log n}}, \qquad (22)$$

for all $j \leq m$. Then, the eigenvalues of K/n satisfy the relative perturbation bound

$$\frac{\widehat{\lambda}_{j} - \lambda_{j}}{\lambda_{j}} \Big| \le C \sqrt{\frac{\log n}{n}} \qquad \text{for all } j \le m$$
(23)

with high probability.

Challenges from spectral concentration

Proposition (Relative perturbaton bounds, Jirak and Wahl [JW23])

Under appropriate assumptions, fix $m \in \mathbb{N}$ and further assume that

$$\mathbf{r}_{j}(T_{k}) := \sum_{k \neq j} \frac{\lambda_{k}}{|\lambda_{j} - \lambda_{k}|} + \frac{\lambda_{j}}{(\lambda_{j-1} - \lambda_{j}) \wedge (\lambda_{j} - \lambda_{j+1})} \leq C \sqrt{\frac{n}{\log n}}, \qquad (22)$$

for all $j \leq m$. Then, the eigenvalues of K/n satisfy the relative perturbation bound

$$\left| \frac{\widehat{\lambda}_j - \lambda_j}{\lambda_j} \right| \le C \sqrt{\frac{\log n}{n}} \qquad \text{for all } j \le m$$
 (23)

with high probability.

Martin Wahl

Ongoing joint work on perturbation series for empirical eigenvalues and eigenprojectors.

- ► For KL(Ψ_{m_n} , $\Pi_n(\cdot|X, Y)$) $\leq n\varepsilon_n^2$, the approximate posterior Ψ_{m_n} inherits the contraction rate ε_n , see Ray and Szabó [RS19].
- ▶ For the empricial eigenvector posterior with $s_j = \hat{u}_j$, $j \leq m$ this bound is available via elementary tools.
- Analyze the Lanczos posterior as an approximation.
- Establish the equivalence of the CG and the Lanczos posterior.

- Our theory is the first providing statistical guarantees for fully numerical algorithms.
- Particular relevance lies in the CG posterior. Default method in the GPyTorch library, see Gardner et al. [Gar+18].
- New interpretation of the CG posterior as a numerical approximation of a variational Bayes method.

Thank you!

References

- [Gar+18] J. Gardner et al. "GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration". In: Advances in Neural Information Processing Systems. Vol. 31. Curran Associates, Inc., 2018.
- [JW23] M. Jirak and M. Wahl. "Relative perturbation bounds with applications to empirical covariance operators". In: Advances in Mathematics 412 (2023), p. 108808.
- [NSZ22] D. Nieman, B. Szabo, and H. van Zanten. "Contraction rates for sparse variational approximations in Gaussian process regression". In: Journal of Machine Learning Research 23 (2022), pp. 1–26.
- [RS19] K. Ray and B. Szabó. "Variational Bayes for High-Dimensional Linear Regression With Sparse Priors". In: Journal of the American Statistical Association (2019).
- [STW02] J. Shawe-Taylor and C. K. I. Williams. "The stability of kernel Principla component analysis and its relation to the process eigenspectrum". In: Advances in Neural Information Processing Systems. 2002.

- [Saa80] Y. Saad. "On the rates of convergence of the Lanczos and the Block-Lanczos methods". In: SIAM Journal on Numerical Analysis 17.5 (1980), pp. 687–706.
- [Wan+19] K. Wang et al. "Exact Gaussian Processes on a Million Data Points". In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc., 2019.
- [Wen+22] J. Wenger et al. "Posterior and computational uncertainty in Gaussian processes". In: Advances in Neural Information Processing Systems. 2022.