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» (H,||-||) is a real, separable Hilbert space and Y C R. Consider n i.i.d.
observations of (X, Y) € H x Y, with || X]|| < k € [1,00)

» Learn linear relationship between X and Y expressed as w € H. Suffer the loss

L(Y, (X, w)), which is convex , Lipschitz with constant L > 0 and
has Lipschitz gradients with constant M > 0 . Includes classical kernel
learning, see e.g. Rosasco and Villa [ ]

> Minimize the population risk £(w) := E(x v)[£(Y, (X, w))] with minimizer
wi €H

GD-Algorithm

1. Set vg = 0 € H and choose constant stepsize v > 0.
2. For t =0,1,2,..., define the GD-iteration

Virl = ve — yVL(v) = ve — — Zf o (X, ve)) X

3. For some T > 1, choose the last iterate vy or the averaged iterate
= T
vro=T715 =1 Vt-



Excess risk decomposition

Proposition (Excess risk decomposition)

Suppose assumptions (Bound), (Conv), (Smooth) and (Min) are satisfied. Consider
the GD-iteration with constant step size v < 1/(k>M). Then, the excess risk of the
averaged iterate VT satisfies

H2

|w*

;
1 =
LVT) — L(wy) < a = Z (VL(ve—1) — VL(Vi—1), vi — wa).
fe=1l

» Inspired by the literature on inexact optimization (“VL(v¢) + e:"), see e.g.
Bertsekas and Tsitsiklis [BT00], Schmidt, Roux, and Bach [SRB11] and Yang,
Wei, and Wainwright [Y\W\W/19].1

» Recovers the deterministic optimization setting, see Bubeck [Bub15].

» In order to bound the stochastic error, it is sufficient to solve two problems:

1. Bound the gradient path (v¢);>0 in a ball with radius R > 0.
2. Bound the empirical process sup,; <g [|VL(v) — VL]|.

1F. Yang, Y. Wei, M. Wainwright. “Early stopping for kernel boosting algorithms: A general analysis with
localized complexities” In: IEEE Transactions on Information Theory (2019).



Comparison with the classical approach

Classical decomposition.

L(ve) — L(wa) = £(ve) — £(ve) + £(ve) — E(w) + E(ws) — L(wa) (1)
(M (I (i)

> (Il) is an optimization error treated by deterministic results.

> (1) and (Il) treated by concentration for sup, | <g [£(v) — L(V)|.
» Guarantee of the form ||v¢|| < R is fundamental.

> Projected gradients Holland and lkeda [HI18], clipped gradients Gorbunov,
Danilova, and Gasnikov [GDG20], technical analyses in Lin, Rosasco, and Zhou
[LRZ16], Lei, Hu, and Tang [LHT21].



Gradient concentration

Proposition (Gradient concentration)

Suppose assumptions (Bound), (Lip) and (Smooth) are satisfied and let R > 0.
Then, for any 6 > 0, with probability at least 1 — §,

\|5\|”5R\\vc(v)—vf(v)|| < 4Rn(VEo FR) + kL 2'°g(4/6) 4logg4/6)

» The empirical Rademacher complexity can be bounded by

2v2(kL 4 kK2 MR)
— 5

» Concentration arguments from Foster, Sekhari, and Sridharan [FSSIS]Z, vector

R(VeLo Fg) < (2)

contraction inequality from Maurer [Mau16].3

2D. J. Foster, A. Sekhari and K. Sridharan. “Uniform convergence of gradients for non-convex learning and
optimization”. In: Advances in Neural Information Processing Systems 2018.

3A. Maurer. “ A vector-contraction inequality for Rademacher complexities”. In Algorithmic Learning Theory
9925 (2016), pp. 3-17.



Bounding the gradient path

For es = VL(vs) — VL(vs), inductively control ||v|| via

t
Ivers = wall < llvo = wall® + 2 v ((—es, vs — wa) + kL |les]l). 3)
s=0

Proposition (Bounded gradient path)

Suppose assumptions , , and are satisfied, set
vo = 0 and choose a constant step size v < mln{l/( 2M),1}. Fix§ € (0,1] with

V/n > max{1,90y Tr*(1 + wL)(M + L)}+/log(4/5) (4)

and R = max{1, 3||w«||}. Then, on the gradient concentration event from
Proposition with probability at least 1 — & for the above choice of R, we have

2R
[lve] < R and ||vt—w*H§? forallt=1,...,T.



Combining the ingredients

Combine the excess risk bound

Wi 2 1 —~
LVT) — L(wy) < % + % D (VL(ve-1) = VL(ve-1), ve — wa). (5)

t=1

with gradient concentration and the bounded gradient path:

> supj,<r IVL(V) — VL(c)|| < R+/log(4/5)/n with probability at least 1 — 6.

» ||vt]] < R~ ||wx||, t < T for n large enough on the same event.



Excess risk bounds

Theorem (Excess Risk bound, averaged iterate)

Suppose Assumptions E E § and are satisfied,
set vo = 0 and choose a constant step size v < min{1/(k2>M), 1} in the
GD-iteration. Then, for any ¢ € (0, 1], such that

V/n > max{1,90y Tx3(1 + wL)(M + L)}+/log(4/5),

the averaged iterate V1 satisfies that, with probability at least 1 — ¢,

LVT) — L(ws) < ”;:*f + 180 max{1, [|wx||?}&>(M + L)1/ w.

Setting T = \/n/(90k%(1 + xL)(M + L)+/log(4/5)) yields

L(T7) — L£(wa) < 225 max{1, [[wa [[2}52(1 + mL)(M + L)y ] 2EE/D).

n



Excess risk bounds

Theorem (Excess Risk bound, last iterate)

Suppose Assumptions E E § and are satisfied,
set vo = 0 and choose a constant step size v < min{1/(k2>M), 1} in the
GD-iteration. Then, for any ¢ € (0, 1], such that

V/n > max{1,90y Tx3(1 + wL)(M + L)}+/log(4/5),

the last iterate vt satisfies that, with probability at least 1 — 9,

L(VT) — L(wx) < H;V’;r + 425 max{1, ||wx||?}3(M + L)\/@_

Setting T = \/n/(90k%(1 + xL)(M + L)+/log(4/5)) yields

L(T7) — L£(wa) < 470 max{1, [[wa |2} 52(1 + mL)(M + L)y ] 2EE/D)

n



Simulation example

Length of the gradient path for step size 1 Risk as a function of the iteration and the stepsize
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Figure 1: Simulation results for the logistic loss.



Thank you!
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