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Setting

▶ (H, ∥ · ∥) is a real, separable Hilbert space and Y ⊂ R. Consider n i.i.d.

observations of (X ,Y ) ∈ H× Y, with ∥X∥ ≤ κ ∈ [1,∞) (Bound).

▶ Learn linear relationship between X and Y expressed as w ∈ H. Suffer the loss

ℓ(Y , ⟨X ,w⟩), which is convex (Conv), Lipschitz with constant L > 0 (Lip) and

has Lipschitz gradients with constant M > 0 (Smooth). Includes classical kernel

learning, see e.g. Rosasco and Villa [RV15].

▶ Minimize the population risk L(w) := E(X ,Y )[ℓ(Y , ⟨X ,w⟩)] with minimizer

w∗ ∈ H (Min).

GD-Algorithm

1. Set v0 = 0 ∈ H and choose constant stepsize γ > 0.

2. For t = 0, 1, 2, . . . , define the GD-iteration

vt+1 = vt − γ∇L̂(vt) = vt −
γ

n

n∑
j=1

ℓ′(Yj , ⟨Xj , vt⟩)Xj .

3. For some T ≥ 1, choose the last iterate vT or the averaged iterate

vT := T−1
∑T

t=1 vt .
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Excess risk decomposition

Proposition (Excess risk decomposition)

Suppose assumptions (Bound), (Conv), (Smooth) and (Min) are satisfied. Consider

the GD-iteration with constant step size γ ≤ 1/(κ2M). Then, the excess risk of the

averaged iterate vT satisfies

L(vT )− L(w∗) ≤
∥w∗∥2

2γT
+

1

T

T∑
t=1

⟨∇L(vt−1)−∇L̂(vt−1), vt − w∗⟩.

▶ Inspired by the literature on inexact optimization (“∇L(vt) + et”), see e.g.

Bertsekas and Tsitsiklis [BT00], Schmidt, Roux, and Bach [SRB11] and Yang,

Wei, and Wainwright [YWW19].1

▶ Recovers the deterministic optimization setting, see Bubeck [Bub15].

▶ In order to bound the stochastic error, it is sufficient to solve two problems:

1. Bound the gradient path (vt)t≥0 in a ball with radius R > 0.

2. Bound the empirical process sup∥v∥≤R ∥∇L̂(v) − ∇L∥.

1F. Yang, Y. Wei, M. Wainwright. “Early stopping for kernel boosting algorithms: A general analysis with

localized complexities” In: IEEE Transactions on Information Theory (2019).
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Comparison with the classical approach

Classical decomposition.

L(vt)− L(w∗) = L(vt)− L̂(vt)︸ ︷︷ ︸
(I)

+ L̂(vt)− L̂(w∗)︸ ︷︷ ︸
(II)

+ L̂(w∗)− L(w∗)︸ ︷︷ ︸
(III)

(1)

▶ (II) is an optimization error treated by deterministic results.

▶ (I) and (III) treated by concentration for sup∥v∥≤R |L̂(v)− L(v)|.
▶ Guarantee of the form ∥vt∥ ≤ R is fundamental.

▶ Projected gradients Holland and Ikeda [HI18], clipped gradients Gorbunov,

Danilova, and Gasnikov [GDG20], technical analyses in Lin, Rosasco, and Zhou

[LRZ16], Lei, Hu, and Tang [LHT21].

5



Gradient concentration

Proposition (Gradient concentration)

Suppose assumptions (Bound), (Lip) and (Smooth) are satisfied and let R > 0.

Then, for any δ > 0, with probability at least 1− δ,

sup
∥v∥≤R

∥∇L(v)−∇L̂(v)∥ ≤ 4R̂n(∇ℓ ◦ FR) + κL

√
2 log(4/δ)

n
+ κL

4 log(4/δ)

n
.

▶ The empirical Rademacher complexity can be bounded by

R̂(∇ℓ ◦ FR) ≤
2
√
2(κL+ κ2MR)

√
n

. (2)

▶ Concentration arguments from Foster, Sekhari, and Sridharan [FSS18]2, vector

contraction inequality from Maurer [Mau16].3

2D. J. Foster, A. Sekhari and K. Sridharan. “Uniform convergence of gradients for non-convex learning and

optimization”. In: Advances in Neural Information Processing Systems 2018.
3A. Maurer. “ A vector-contraction inequality for Rademacher complexities”. In Algorithmic Learning Theory

9925 (2016), pp. 3-17.
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Bounding the gradient path

For es = ∇L̂(vs)−∇L(vs), inductively control ∥vt∥ via

∥vt+1 − w∗∥2 ≤ ∥v0 − w∗∥2 + 2
t∑

s=0

γ
(
⟨−es , vs − w∗⟩+ κL∥es∥

)
. (3)

Proposition (Bounded gradient path)

Suppose assumptions (Bound), (Conv), (Lip), (Smooth) and (Min) are satisfied, set

v0 = 0 and choose a constant step size γ ≤ min{1/(κ2M), 1}. Fix δ ∈ (0, 1] with

√
n ≥ max{1, 90γTκ2(1 + κL)(M + L)}

√
log(4/δ) (4)

and R = max{1, 3∥w∗∥}. Then, on the gradient concentration event from

Proposition 0.2 with probability at least 1− δ for the above choice of R, we have

∥vt∥ ≤ R and ∥vt − w∗∥ ≤
2R

3
for all t = 1, . . . ,T .
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Combining the ingredients

Combine the excess risk bound

L(vT )− L(w∗) ≤
∥w∗∥2

2γT
+

1

T

T∑
t=1

⟨∇L(vt−1)−∇L̂(vt−1), vt − w∗⟩. (5)

with gradient concentration and the bounded gradient path:

▶ sup∥v∥≤R ∥∇L(v)−∇L̂(c)∥ ≲ R
√

log(4/δ)/n with probability at least 1− δ.

▶ ∥vt∥ ≤ R ∼ ∥w∗∥, t ≤ T for n large enough on the same event.
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Excess risk bounds

Theorem (Excess Risk bound, averaged iterate)

Suppose Assumptions (Bound), (Conv), (Lip), (Smooth) and (Min) are satisfied,

set v0 = 0 and choose a constant step size γ ≤ min{1/(κ2M), 1} in the

GD-iteration. Then, for any δ ∈ (0, 1], such that

√
n ≥ max{1, 90γTκ2(1 + κL)(M + L)}

√
log(4/δ),

the averaged iterate vT satisfies that, with probability at least 1− δ,

L(vT )− L(w∗) ≤
∥w∗∥2

2γT
+ 180max{1, ∥w∗∥2}κ2(M + L)

√
log(4/δ)

n
.

Setting γT =
√
n/(90κ2(1 + κL)(M + L)

√
log(4/δ)) yields

L(vT )− L(w∗) ≤ 225max{1, ∥w∗∥2}κ2(1 + κL)(M + L)

√
log(4/δ)

n
.
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Excess risk bounds

Theorem (Excess Risk bound, last iterate)

Suppose Assumptions (Bound), (Conv), (Lip), (Smooth) and (Min) are satisfied,

set v0 = 0 and choose a constant step size γ ≤ min{1/(κ2M), 1} in the

GD-iteration. Then, for any δ ∈ (0, 1], such that

√
n ≥ max{1, 90γTκ2(1 + κL)(M + L)}

√
log(4/δ),

the last iterate vT satisfies that, with probability at least 1− δ,

L(vT )− L(w∗) ≤
∥w∗∥2

2γT
+ 425max{1, ∥w∗∥2}κ2(M + L)

√
log(4/δ)

n
.

Setting γT =
√
n/(90κ2(1 + κL)(M + L)

√
log(4/δ)) yields

L(vT )− L(w∗) ≤ 470max{1, ∥w∗∥2}κ2(1 + κL)(M + L)

√
log(4/δ)

n
.
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Simulation example

Figure 1: Simulation results for the logistic loss.
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Thank you!

12



References i

References

[BT00] D. P. Bertsekas and J. N. Tsitsiklis. “Gradient Convergence in Gradient

Methods with Errors”. In: SIAM Journal on Optimization 10.3 (2000),

pp. 627–642.

[Bub15] S. Bubeck. “Convex Optimization: Algorithms and Complexity”. In:

Foundations and Trends in Machine Learning 8.3–4 (2015), pp. 231–357.

[FSS18] D. J. Foster, A. Sekhari, and K. Sridharan. “Uniform Convergence of

Gradients for Non-convex Learning and Optimization”. In: Advances in

Neural Information Processing Systems. Vol. 31. Redhook, NY: Curran Associates,

Inc., 2018.

[GDG20] E. Gorbunov, M. Danilova, and A. Gasnikov. “Stochastic Optimization

with Heavy-tailed Noise via Accelerated Gradient Clipping”. In: Advances

in Neural Information Processing Systems. Redhook, NY: Curran Associates, Inc.,

2020.

[HI18] M. J. Holland and K. Ikeda. Efficient Learning with Robust Gradient

Descent. 2018. url: https://arxiv.org/abs/1706.00182.

13

https://arxiv.org/abs/1706.00182


References ii

[LHT21] Y. Lei, T. Hu, and K. Tang. “Generalization Performance of Multi-pass

Stochastic Gradient Descent with Convex Loss Functions”. In: The

Journal of Machine Learning Research 22.25 (2021), pp. 1–41.

[LRZ16] J. Lin, L. Rosasco, and D. Zhou. “Iterative Regularization for Learning

with Convex Loss Functions”. In: The Journal of Machine Learning Research

17.1 (2016), pp. 2718–2755.

[Mau16] A. Maurer. “A Vector-contraction Inequality for Rademacher

Complexities”. In: Algorithmic Learning Theory. Vol. 9925.: Springer, 2016,

pp. 3–17.

[RV15] L. Rosasco and S. Villa. “Learning with Incremental Iterative

Regularization”. In: Advances in Neural Information Processing Systems. Vol. 28.

Redhook, NY: Curran Associates, Inc., 2015.

[SRB11] M. Schmidt, N. Roux, and F. Bach. “Convergence Rates of Inexact

Proximal-gradient Methods for Convex Optimization”. In: Advances in

Neural Information Processing Systems. Vol. 24. Redhook, NY: Curran Associates,

Inc., 2011.

14



References iii

[YWW19] F. Yang, Y. Wei, and M. J. Wainwright. “Early stopping for kernel

boosting algorithms: A general analysis with localized complexities”. In:

IEEE Transactions on Information Theory (2019).

15


	References

