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Motivation: Scalability of Gaussian
process regression



Gaussian process (GP) regression

Consider i.i.d. observations from the model

Yi = F (Xi ) + εi , i = 1, . . . , n, (1)

where

▶ X1, . . . ,Xn ∼ G i.i.d. on Rd and ε ∼ N(0, σ2In);

▶ F ∼ GP(0, k) with p.s.d. kernel k : Rd×d → R is a GP-prior on L2(G), i.e.

EF (x) = 0, Cov(F (x),F (x ′)) = k(x , x ′), x , x ′ ∈ Rd . (2)

Setting K := (k(Xi ,Xj ))
n
i,j=1 ∈ Rn×n and k(X , x) := (k(Xi , x))

n
i=1 ∈ Rn, the posterior

Π(·|X ,Y ) is given by the GP with mean and covariance function

x 7→ k(X , x)⊤(K + σ2In)
−1Y (3)

(x , x ′) 7→ k(x , x ′)− k(X , x)⊤(K + σ2In)
−1k(X , x ′).
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Figure 1: Gaussian Process Regression (prediction) with a squared exponential kernel. Left plot

are draws from the prior function distribution. Middle are draws from the posterior. Right is mean

prediction with one standard deviation shaded.
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Motivating problem

The computation of (K + σ2I )−1 has a computational complexity of O(n3), which

becomes infeasable for large n.
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Algorithms from Probabilistic
Numerics



Algorithms from probabilistic numerics (Wenger et al. [Wen+22]1)

Idea: Focussing on the posterior mean k(X , x)⊤(K + σ2In)−1Y , iteratively solve

(K + σ2In)W = Y for the representer weights W .

▶ Consider a Bayesian updating scheme with initial believes

W ∗ = (K + σ2In)−1Y ∼ N(0, (K + σ2In)−1) =: N(w0, Γ0).

▶ Consecutively update by conditioning on the information projection

αj := s⊤j (Y − (K + σ2In)wj−1), j ≤ m, (7)

where sj , j ≤ m are search directions chosen by the user. Inductively,

W ∗|αm ∼ N(wm, Γm) with

wm = wm−1 + η−1
m dmd

⊤
m Y = CmY , (8)

Γm = Γm−1 − η−1
m dmd

⊤
m = (K + σ2I )−1 − Cm,

where dm = (I − Cm−1(K + σ2I ))sm, ηm = s⊤m (K + σ2I )dm and

Cm =
∑m

j=1 η
−1
j djd

⊤
j .

1J. Wenger et al. “Posterior and computational uncertainty in Gaussian processes.”. In: Advances in Neural

Information Processing Systems (2022).
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▶ After m steps, believes are given by N(wm, Γm) = N(CmY , (K + σ2)−1 − Cm).

This yields the approximate Gaussian posterior Ψm := PF |W=wN(wm, Γm)(dw)

with mean and covariance functions

x 7→ k(X , x)⊤CmY (x , x ′) 7→ k(x , x ′)− k(X , x)⊤Cmk(X , x ′), (9)

where Cm is a rank m matrix approximating (K + σ2In)−1.

▶ The approximate covariance can be split into a mathematical and a compu-

tational uncertainty

(x , x ′) 7→ k(x , x ′)− k(X , x)⊤(K + σ2I )−1k(X , x ′)︸ ︷︷ ︸
Mathematical uncertainty

+ k(X , x)⊤Γmk(X , x ′).︸ ︷︷ ︸
Computational uncertainty

(10)

Figure 2: Mathematical and computational uncertainty. Source: [Wen+22]
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Algorithm 1 GP approximation scheme

1: procedure ITERGP(k,X ,Y )

2: C0 ← 0 ∈ Rn×n

3: for j = 1, 2, . . . ,m do

4: sj ← POLICY()

5: dj ← (I − Cj−1Kσ)sj

6: ηj ← s⊤j Kσdj

7: Cj ← Cj−1 + η−1
j djd

⊤
j

8: end for

9: µm(·)← k(X , ·)⊤CmY

10: km(·, ·)← k(·, ·)− k(X , ·)⊤Cmk(X , ·)
11: end procedure

12: return GP(µm, km)

Policy examples

(a) sj := ej , j ≤ m ⇝ partial Cholesky

decomposition of K + σ2I .

(b) sj := ûj , j ≤ m ⇝ SVD of

K + σ2I .

(c) sj := ũj , j ≤ m ⇝ Lanczos

approximation.

(b) sj := dCG
j , j ≤ m ⇝ CG applied to

Kσv = Y .
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The empirical eigenvector posterior

Consider the spectral decomposition of the empirical kernel matrix

K =
n∑

j=1

µ̂j ûj û
⊤
j = n

n∑
j=1

λ̂j ûj û
⊤
j (11)

and choose the search directions sj := ûj , j ≤ m .

Then, the approximate posterior

Ψm = ΨEV
m is given by the mean and covariance function

x 7→ k(X , x)⊤CmY (x , x ′) 7→ k(x , x ′)− k(X , x)⊤Cmk(X , x ′), (12)

where (K + σ2In)−1 is approximated by

Cm = CEV
m =

m∑
j=1

(µ̂j + σ2)−1ûj û
⊤
j . (13)

The ΨEV
m is equivalent to the Variational Bayes posterior based on spectral inducing

variables [NSZ22]2.

2D. Nieman, B.Szabo and H. van Zanten. “Contraction rates for sparse variational approximations in Gaussian

process regression”. In: Journal of Machine Learning Research 23 (2022).
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and choose the search directions sj := ûj , j ≤ m . Then, the approximate posterior

Ψm = ΨEV
m is given by the mean and covariance function

x 7→ k(X , x)⊤CmY (x , x ′) 7→ k(x , x ′)− k(X , x)⊤Cmk(X , x ′), (12)

where (K + σ2In)−1 is approximated by

Cm = CEV
m =

m∑
j=1

(µ̂j + σ2)−1ûj û
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The Lanczos posterior

For v0 ∈ R with ∥v0∥ = 1, consider the Krylov spaces

Km̃ := span{v0,Kv0, . . . ,K m̃−1v0}, m̃ = 1, 2, . . . , n. (14)

The Lanczos approximate eigenpairs

(µ̃j , ũj ), λ̃j := n−1µ̃j , j = 1, . . . , m̃ (15)

are given by the following algorithm:

Algorithm 2 Lanczos algorithm

1: procedure ITERLanczos(K , v0, m̃)

2: Initialize v0 with ∥v0∥ = 1.

3: Compute ONB v1, . . . , vm̃ of Km̃.

4: V ← (v1, . . . , vm̃).

5: A← n−1K .

6: Compute eigenpairs (λ̃j , ũj )j≤m̃ of V⊤AV .

7: ũj ← V ũj , j ≤ m̃.

8: end procedure

9: return (λ̃j , ũj )j≤m̃.
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Consider the spectral decomposition of the empirical kernel matrix

K =
n∑

j=1

µ̂j ûj û
⊤
j (16)

and choose the search directions sj := ũj , j ≤ m , where (µ̃j , ũj )j≤m is the Lanczos

approximate eigensystem up to order m.

Then, the approximate posterior Ψm = ΨL
m is

given by the mean and covariance function

x 7→ k(X , x)⊤CmY (x , x ′) 7→ k(x , x ′)− k(X , x)⊤Cmk(X , x ′), (17)

with

Cm = CL
m =

m∑
j=1

(µ̃j + σ2)−1ũj ũ
⊤
j . (18)

Randomness of the kernel matrix

Since K = (k(Xi ,Xj )i,j≤n) is a random matrix, the spectral decomposition of K

cannot be computed in advance.
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The CG posterior

Conjugate gradient descent. Iteratively solve (K + σ2In)w = Y by setting w0 = 0

and for j ≥ 1,

ϱ(wj ) = min
t∈R

ϱ(wj−1 + tdCG
j ), (19)

where ϱ(w) := (w⊤(K + σ2In)w)/2− Y⊤w , and the (dCG
j )j≥1 are conjugate search

directions satisfying (dCG)⊤j (K + σ2In)dCG
k = 0, j ̸= k.

For the policies sj := dCG
j , j ≤ m , Bayesian updating is equivalent to the CG-iteration

and we obtain the approximate posterior ΨCG
m given by

x 7→ k(X , x)⊤CmY (x , x ′) 7→ k(x , x ′)− k(X , x)⊤Cmk(X , x ′), (20)

where Cm = CCG
m is given by the implicit approximation of the inverse provided by CG.
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Reduction in computational complexity

The approximate inversions CL
m,C

CG
m have a computation cost of O(mn2), which is

feasible when m≪ n.
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GPU accelerated matrix vector multiplication

CG only relies on matrix vector multiplications, which can be GPU accelerated and

makes CG particularly relevant for large scale applications, see Wang, Pleiss,

Gardner, Tyree, Weinberger and Wilson [Wan+19].
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Main results: Contraction of
approximate posteriors



Contraction rates

For f0 ∈ H with H = ranT
1/2
k ,

Tk : L2(G)→ L2(G), f 7→
∫

f (y)k(·, y)G(dy) =
∞∑
j=1

λj ⟨f , ϕj ⟩L2(G)ϕj , (21)

let Pf0 be the measure corresponding to the data generating process

Yi = f0(Xi ) + εi , i = 1, . . . n. (22)

Consider the densities

P :=
{
pf (x , y) =

1
√
2πσ2

exp
(−(y − f (x))2

2πσ2

)
, f ∈ L2(G)

}
(23)

with respect to G ⊗ λ and write

dH(f , g) : = dH(pf , pg ) =

√∫
(
√
pf −

√
pg )2 dG ⊗ λ, f , g ∈ L2(G) (24)

for the Hellinger distance.

Definition 3.1 (Contraction rate)

The posterior contracts with rate εn → 0 around the truth f0 ∈ L2(G) if

Π{dH(·, f0) ≥ Mnεn|X ,Y } = Πn{dH(·, f0) ≥ Mnεn|(Xi ,Yi )
n
i=1}

P⊗n
f0−−−−→

n→∞
0.
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For f0 ∈ L2(G), define the concentration function at f0 as

φf0 (ε) := inf
h∈H:∥h−f0∥2≤ε

1

2
∥h∥2H − log P{∥F∥2 < ε}, (25)

where H = ranT
1/2
k is the RKHS of the Gaussian process F .

(A1) (CFun): For a sequence εn → 0, assume the concentration function at f0 satisfies

φf0 (εn) ≤ Cφnε
2
n (26)

for some Cφ > 0.

Proposition 3.2 (Standard contraction rate, Ghosal and van der Vaart [Gv17])

Assume that at some f0 ∈ H, the contraction function inequality Equation (26) holds

for a sequence εn → 0 with nε2n →∞. Then, there exists a constant C1 > 0 such

that for any constant C2 > 0,

En
f0
(Π{dH(·, f0) ≥ Mnεn|X ,Y }1An ) ≤ C1 exp(−C2nε

2
n), (27)

for n sufficiently large and a sequence (An)n∈N with P⊗n
f0

(An)→ 0.

16



(A2) (SPE): The population eigenvalues (λj )j≥1 of Tk are simple, i.e.,

λ1 > λ2 > · · · > 0.

(A3) (EVD): We assume the following decay behaviour of the population eigenvalues:

(i) There exists a convex function λ : [0,∞) → [0,∞) such that λj = λ(j) and

limj→∞ λ(j) = 0.

(ii) There exists a constant C > 0 such that, λ(Cj) ≤ λ(j)/2 for all j ∈ N.
(iii) There exists a constant c > 0 such that λj ≥ e−cj for all j ∈ N.

(A4) (KLMom): There exists a p > 4, such that the Karhunen-Loève coefficients

ηj := ⟨k(·,X1), ϕj ⟩H = ϕj (X1) of k(·,X1) satisfy

sup
j≥0

E|ηj |p <∞, (28)

where ϕj denotes the j-th eigenfunction of the kernel operator Tk .
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Theorem 3.3 (Contraction rates for EVGP, LGP and CGGP, S. and Szabo)

Under Assumptions (SPE), (EVD), (KLMom), let f0 ∈ H ∩ L∞(G) satisfy the con-

centration function inequality from Assumption (CFUN), for a sequences εn → 0

with nε2n →∞. Further, let

∞∑
j=mn+1

λj ≤ Cε2n and Eλ̂mn+1 ≤ Cn−1 (29)

hold for a sequence mn satisfying C ′ log n ≤ mn = o(
√
n/ log n ∧ (n(p/4−1)/2

logp/8−1 n)) for some C ′ > 0 sufficiently large. Then, the EVGP, LGP and the

CGGP approximate posteriors based on mn log n actions contract around f0 with rate

εn, i.e., for any sequence Mn →∞,

Ψmn log n{dH(·, f0) ≥ Mnεn}
n→∞−−−−→ 0 (30)

in probability under P⊗n
f0

and n→∞.
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Example: Polynomially decaying eigenvalues

For a suitable ONB (ϕj )j≥1 of L2(G) and Zj ∼ N(0, 1) i.i.d., consider the random

series prior

F (x) =
∞∑
j=1

τ j−1/2−α/dZjϕj (x), x ∈ Rd (31)

where α > 0 and τ are the regularity and scale hyperparameters of the process. Then,

for any

f0 ∈ Sβ(L) := {f ∈ L2(G) : ∥f ∥2
Sβ ≤ L} with ∥f ∥2

Sβ :=
∞∑
j=1

j2β/d ⟨f , ϕj ⟩2, (32)

with d/2 < β ≤ α+ d/2 and an apropriate choice of τ , the approximate posterior

satisfies that for any Mn →∞,

Ψmn{f : dH(f , f0) ≥ Mnn
−β/(d+2β)|X ,Y } → 0, (33)

in probability under P⊗n
f0

and n→∞ with mn ∼ nd/(2β+d) log n.
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Simulation example

Figure 3: Simulation results for n = 3000, m = 20, 40.
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Simulation example

Figure 4: Simulation results for n = 3000, m = 80 and scaling of computation times.
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Some conclusions

▶ Our theory provides new statistical guarantees for fully numerical algorithms.

▶ Particular relevance in the CG posterior. Default method in the GPyTorch library,

see Gardner et al. [Gar+18].
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Proof techniques



Contraction of the approximate posterior

Proposition 4.1 (Contraction of approximation, Ray and Szabó [RS19])

Under the assumptions of Proposition 3.2, let (Ψmn )n∈N be a sequence of

distribution such that for any sequence M′
n →∞, there exists events A′

n such that

KL(Ψmn ,Π(·|X ,Y ))1A′
n
≤ nM′2

n ε2n and P⊗n
f0

(A′
n)→ 1. (34)

Then, for all sequences Mn →∞

Ψmn{dH(·, f0) ≥ Mnεn}
P⊗n
f0−−−−→

n→∞
0. (35)

Proof sketch.

Use the dual formulation of the Kullback-Leibler divergence

KL(Q,P) = sup
PeZ<∞

(QZ − log PeZ ), (36)

see Boucheron et al. [BLM13], to derive that for Fn := {dH(·, f0) ≥ Mnεn},

Ψm(Fn)1An∩A′
n
≤ C

KL(Ψm,Π(·|X ,Y ))1A′
n
+ eCnM

2
nε

2
n/2Π(Fn|X ,Y )1An

nM2
nε

2
n

. (37)
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A Kullback-Leibler bound

2KL(Ψm,Πn(·|X ,Y )) = 2KL(N(KK−1
σ Y ,K − KK−1

σ K),N(KCmY ,K − KCmK))

= tr(K − KK−1
σ K)−1(K − KCmK)− n

+ Y⊤(K−1
σ − Cm)K(K − KK−1

σ K)−1K(K−1
σ − Cm)Y

+ log det([K − KCmK)−1[K − KK−1
σ K ])

=: (I) + (II) + (III) (38)

with Kσ = K + σ2I , (III) ≤ 0 and

(I) + (II) = tr(K − KK−1
σ K)−1(K − KCmK)− n + ∥(K−1

σ − Cm)Y ∥2
K(K−KK−1

σ K)−1K

≤ tr(K − KK−1
σ K)−1K(K−1

σ − CEV
m )K + 2∥(K−1

σ − CEV
m )Y ∥2

K(K−KK−1
σ K)−1K

+ tr(K − KK−1
σ K)−1K(CEV

m − Cm)K + 2∥(Cm − CEV
m )Y ∥2

K(K−KK−1
σ K)−1K

,

(39)

where ∥ · ∥A denotes the norm induced by the dot-product ⟨·,A·⟩.
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Proposition 4.2 (Kullback-Leibler bound)

Under Assumptions (SPE), (EVD), and (KLMom), let f0 ∈ H ∩ L∞(G) satisfy the

concentration function inequality from Assumption (CFUN) for a sequence εn → 0

with nε2n →∞. Additionally, let mn be a sequence that satisfies

C ′ log n ≤ mn = o((
√
n/ log n) ∧ (n(p/4−1)/2(log n)p/8−1)) for some C ′ > 0

sufficiently large and consider the Lanczos Algorithm 2 iterated for mn log n steps

initialized at v0 ∈ {Y /∥Y ∥,Z/∥Z∥}, where Z is a n-dimensional standard Gaussian.

Then, for any sequence Mn →∞, the approximate posterior Ψm from Algorithm 1

based on m = mn log n Lanczos actions satisfies the bound

KL(Ψmn log n,Πn(·|X ,Y )) ≤
Mnn

σ2

(
ε2n +

∞∑
j=mn+1

λj + nε2nEλ̂mn+1

)
(40)

with probability converging to one under P⊗n
f0

and n→∞.

Corollary 4.3 (Equivalence of LGP and CGGP)

For any integer m ≥ 1, the approximate posterior from Algorithm 1 based on m

CG-actions is identical to the one resulting from the Lanczos iteration with m steps

and starting value v0 = Y /∥Y ∥. Consequently, the bound from Proposition 4.2 also

holds for the CG-approximate posterior under the same conditions.
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Lanczos bounds from Numerical analysis

Theorem 4.4 (Lanczos: Eigenvalue bound, [Saa80])

Under Assumption (LWdf), for any fixed integer i ≤ m̃ < n with λ̃i−1 > λ̂i if i > 1,

and any integer p̃ ≤ m̃ − i , the eigenvalue approximation satisfies

0 ≤ λ̂i − λ̃i ≤ (λ̂i − λ̂n)
( κ̃iκi,p̃ tan(ûi , v0)

Tm̃−i−p̃(γi )

)2
, (41)

where γi := 1 + 2(λ̂i − λ̂i+p̃+1)/(λ̂i+p̃+1 − λ̂n),

κ̃i :=

i−1∏
j=1

λ̃j − λ̂n

λ̃j − λ̂i

, κi,p̃ :=

i+p̃∏
j=i+1

λ̂j − λ̂n

λ̂i − λ̂j

, (42)

and Tl denotes the l-th Tschebychev polynomial.

Geometric convergence

Since the Tschebychev polynomial satisfy

Tk (x) ≥ c|x |k , |x | ≥ 1, (43)

values γi > 1 guarantee geomentric convergence.
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Theorem 4.5 (Lanczos: Eigenvector bound [Saa80])

Under Assumption (LWdf), for any fixed i ≤ m̃, let (λ̃∗, ũ∗) be the approximate

eigenpair from Algorithm 2 that satisfies λ̂i − λ̃∗ = minj≤m̃ λ̂i − λ̃j . Then, for any

integer p̃ ≤ m̃ − i , we have

1

2
∥ũ∗ũ∗⊤ − ûi û

⊤
i ∥

2
HS = sin2(ũ∗, ûi ) ≤

(
1 +
∥K∥op
nδ2i

)(κiκi,p̃ tan(ûi , v0)

Tm̃−i−p̃(γi )

)2
, (44)

where δ2i := minλ̃j ̸=λ̃∗ |λ̂i − λ̃j |, γi := 1 + 2(λ̂i − λ̂i+p̃+1)/(λ̂i+p̃+1 − λ̂n),

κi :=

i−1∏
j=1

λ̂j − λ̂n

λ̂j − λ̂i

, κi,p̃ :=

i+p̃∏
j=i+1

λ̂j − λ̂n

λ̂i − λ̂j

(45)

and Tl denotes the l-th Tschebychev polynomial.
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Challenges from spectral concentration

Theorem 4.6 (Eigenvalue concentration, Shawe-Taylor and Williams [STW02])

The empirical eigenvalues (λ̂j )j≤n of the normalized kernel matrix K/n satisfy

(i) For any t > 0 and any fixed m ≥ 1, both

P{|λ̂m − Eλ̂m| ≥ t} ≤ 2 exp
( −2nt2

maxx k(x , x)4

)
(46)

and

P{|
n∑

j=m+1

λ̂j − E
n∑

j=m+1

λ̂j | ≥ t} ≤ 2 exp
( −2nt2

maxx k(x , x)4

)
. (47)

(ii) For any fixed m ≥ 1,

E
m∑
j=1

λ̂j ≥
m∑
j=1

λj and E
n∑

j=m+1

λ̂j ≤
∞∑

j=m+1

λj . (48)
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Challenges from spectral concentration

Proposition 4.6 (Relative perturbaton bounds, [JW23])

Under Assumptions (SPE) and (KLMom), fix m < m0 ≤ n such that λm0 ≤ λm/2

and further assume that

ri (Σ) :=
∑
k ̸=i

λk

|λi − λk |
+

λi

(λi−1 − λi ) ∧ (λi − λi+1)
≤ C

√
n

log n
, (46)

for all i ≤ m.

Then, the eigenvalues of A = n−1K satisfy the relative perturbation bound∣∣∣ λ̂i − λi

λi

∣∣∣ ≤ C

√
log n

n
for all i ≤ m (47)

with probability at least 1−m2
0(log n)

−p/4n1−p/4.
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Martin Wahl, Bielefeld

Ongoing joint work on perturbation series for

empirical eigenvalues and eigenprojectors.
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Some conclusions (continued)

▶ Our theory provides new statistical guarantees for fully numerical algorithms.

▶ Particular relevance lies in the CG posterior. Default method in the GPyTorch

library, see Gardner et al. [Gar+18].

▶ New interpretation of the CG posterior as a numerical approximation of a

variational Bayes method.
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Resources

Preprint Author page

Thank you!
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